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Towards an Analysis of theGhostFluidMethod

James J. Quirk

June 28, 2006

Abstract

This note presents a Riemann-based analysis of theGhostFluidmethod, applied in one spatial dimen-
sion. As it stands, the analysis should be considered a work in progress and open to group discussion.

1 TheGhostFluidPremise

TheGhostFluidmethod is built on the premise that a material interface, such as that shown in Figure1
(a), can be discretized as two distinct materials that communicate, indirectly, via ghostcells. The situation
is shown pictorially in Figure1 (b). The attraction of the approach is that the two halves of the problem
can be integrated using a regular, single material scheme, with none of the complex, book-keeping
normally associated with a multi-material solver. On the down side, the reliability of the approach rests
with the filling of the ghost states. Specifically, the states must be chosen such that the resultant evolution
is consistent with the full problem, and for non-linear systems, there is no guarantee that satisfactory
states actually exist.
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Figure 1: TheGhostFluidpremise: the full problem (a) is broken down to two component problems (b) that
are coupled via ghostcells.
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1.1 One name, many approaches

It is important to realise that the term “GhostFluidmethod” covers a class of numerical scheme, and it
is the details of the ghost-state prescription that defines a particular algorithm. The originalGhostFluid
paper[1], for instance, employed the prescription shown in Figure2 (a), but some authors prefer the
recipe shown in Figure2 (b), presumably on the grounds that it is easier to implement for non-ideal
equations of state. Both prescriptions are justified, by their proponents, on the basis that pressure and
velocity are continuous across a contact wave. But this argument is misleading, for in a hydro-simulation
acoustic waves can propagate across a material interface and so impose gradients on the local pressure
and velocity fields.

The purpose of this note is to examine theGhostFluidmethod from first principles so as to under-
stand how the choice of ghost-states influences the accuracy and robustness of the resultant evolution
scheme. Godunov’s Riemann-based approach is adopted, as it provides a clean framework for analysis.
Interestingly, the prescription in Figure2 (a) mimics the Riemann solution in the case of an isolated
acoustic wave crossing the material interface, and so while it is usually referred to as anisobaric pre-
scription it is better thought of as anisentropic-coupling. The prescription in Figure2 (b) is referred to
ascontact-coupling, for it mimics the Riemann solution only in the case of an isolated contact wave.

For an isolated contact,Pa = Pb, and the isobaric-coupling reduces to the contact-coupling. But in
general, the performance of the two couplings is different, and so their usual justification, which does
not distinguish between the couplings, is clearly incomplete. Indeed, later on, we will show that that
the contact-coupling is actually inconsistent with the underlying PDE’s and as a consequence should be
avoided.
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Figure 2: TwoGhostFluidprescriptions in common use. (a) is theisobaricapproach used in[1] where the
pressure,P , and velocity,u, in a ghost-cell are copied from the co-located real material. And the density,ρ,
is found by connecting the nearest real-cell, of the same material, by the isentropec2 = ∂P

∂ρ . (b) is a variation
on a theme, whereP andu are the same as the isobaric case, and density is found by simple extrapolation.
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2 Sources of Error

The aim of this note is to develop an understanding of the error associated with theGhostFluidcoupling.
Godunov’s Riemann-based approach is adopted, as it provides a clean framework for analysis.

2.1 Choice of control volumes

Consider Figure3, it shows the Riemann solution that arises when a diaphragm, separating two semi-
infinite states,Wn

L andWn
R, bursts. In the general case, three waves separate four states. The idea

behind Godunov’s method is to average the Riemann solution to find the numerical solution at timetn+1,
and although originally developed for a single material, the method extends trivially to two materials.
Specifically,

C ′bWn+1
L = C ′aWn

L + abWn
∗L (1)

bCWn+1
R = bcWn

∗R + cCWn
R

which can be re-written in term of Courant numbers,ν = λ∆t
∆x , to get:

(1 + ν2)Wn+1
L = (1 + ν1)Wn

L + (ν2 − ν1)Wn
∗L (2)

(1− ν2)Wn+1
R = (ν3 − ν2)Wn

∗R + (1− ν3)Wn
R

Equation2 can also be derived using a finite-volume formulation. In conservation form, the govern-
ing equations can be written:

∂W
∂t

+
∂F
∂x

= 0 (3)

F = F(W(x, t))

which can be integrated for the volumesAbC ′B′ andABCb. Consider the right-hand volume:

(1− ν2)Wn+1
R = Wn

R − ∆t

∆x
(F̄BC − F̄Ab) (4)

F̄BC = F(Wn
R)

F̄Ab = F(Wn
∗R)− λ2Wn

∗R

which since,

F(Wn
R)− F(Wn

∗R) = λ3(Wn
R −Wn

∗R) (5)

can be rearranged to match Equation2. The left-hand volume can be handled in the same way.
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Figure 3: A diaphragm separating two semi-infinite states bursts. The Riemann solution, in the general case,
consists of three waves, with speeds{λ1, λ2, λ3}, that separate four states{WL,W∗L,W∗R,WR}.
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The Riemann solution provides motivation for theGhostFluidcoupling shown in Figure4. However,
a key element of theGhostFluidmethod is that the single-material solvers operate on the fixed control-
volumes,ABCD andADC ′B′, instead of the time-varying volumes bounded by the contact wave.
Thus,

Wn+1
L = Wn

L −
∆t

∆x
(F̄AD − F̄B′C′)

F̄AD = F(Wn
∗L) for λ1 < 0

F̄AD = F(Wn
L) for λ1 > 0

F̄B′C′ = F(Wn
L)

Wn+1
R = Wn

R − ∆t

∆x
(F̄BC − F̄AD)

F̄BC = F(Wn
R)

F̄AD = F(Wn
∗R) for λ3 > 0

F̄AD = F(Wn
R) for λ3 < 0

(6)

which can be rearranged to give:

Wn+1
L = Wn

L − ν′
1(W

n
∗L −Wn

L) (7)
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R = Wn

R − ν′
3(W
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∗R)
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ν′
3 = max(0, ν3)
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Figure 4:GhostFluidcoupling motivated by the Riemann solution.
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Now the departure of Equation7 from Equation2 can be used to gauge theGhostFluiderror that
arises from using fixed control-volumes. For ignoring the complication of integrating through an ex-
pansion fan, Equation2 provides the exact evolution for the states that abutt the interface. To make the
comparison easier, Equation2 can be rearranged to give:

Wn+1
L = Wn

L −
(

ν′
1 −

ν′
2(1 + ν′

1)
(1 + ν′

2)

)
(Wn

∗L −Wn
L) (8)

Wn+1
R = Wn

R −
(

ν′
3 −

ν′′
2 (1− ν′

3)
(1− ν′′

2 )

)
(Wn

R −Wn
∗R)

where the left and right states attn+1 are now for the Eulerian cellsABCD andAB′C ′D, and:

ν′
2 = min(0, ν2)

ν′′
2 = max(0, ν2)

Thus the errors can be written:

εn+1
L =

ν′
2(1 + ν′

1)
(1 + ν′

2)
(Wn

∗L −Wn
L) (9)

εn+1
R = −ν′′

2 (1− ν′
3)

(1− ν′′
2 )

(Wn
R −Wn

∗R)

Equation9 suggests that the error which arises from using a fixed-control volume will be small:

• For an isolated contact,Wn
∗L = Wn

L andWn
R = Wn

∗R, soεn+1
L = εn+1

R = 0.

• For flow to the rightν′
2 = 0, soεn+1

L = 0.

• For flow to the leftν′′
2 = 0, soεn+1

R = 0.

• For a strong shock moving to the left,ν′
1 → −1, soεn+1

L → 0.

• For a strong shock moving to the right,ν′
3 → 1, soεn+1

R → 0.

• For subsonic flow, bothν′
2 andν′′

2 are small, soεn+1
L → 0 andεn+1

R → 0.

Heuristic arguments such as the above can prove to be misleading, or even downright dangerous. But in
Section3, computational results will be presented to support the basic assertions.

It is pertinent to ask where the errors will be largest, but given the non-linearities involved the answer
is not straightforward. For example, the larger jump,(Wn

R − Wn
∗R), the smaller the quantity1 − ν3

(assuming a fixed∆t); and vice versa. Therefore the error is to some degree self-adjusting. Similarly,
reducing the time step: increases1 − ν3, but decreasesν′′

2 . If ν′′
2 is assumed to be small, which implies

ν′
2 is small, then the errors can be expanded to:

εn+1
L = ν′

2(1 + ν′
1)(W

n
∗L −Wn

L)
εn+1
R = ν′′

2 (1− ν′
3)(W

n
R −Wn

∗R)

from which it can be seen that the maximum errors are:

εmax
L = ν′

2(W
n
∗L −Wn

L)
εmax
R = ν′′

2 (Wn
R −Wn

∗R)

which, given the starting assumption, are small.
It is also pertinent to ask how do the errors accumulate over multiple time steps. But, again, this

is not an easy question to answer. The worst case situation is that repeated small errors accumulate to
become large errors. In this regard, an expansion crossing a material interface is likely to result in a
larger error accumulation than a shock crossing the interface. But the computational evidence is that the
errors do not accumulate when using the Riemann-based,GhostFluidcoupling.
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2.2 Lack of sub-cell resolution

TheGhostFluidmethod does not employ sub-cell resolution. Consequently it is possible for a cell to flip
materials for small changes in the level-set used to track the material interface. Consider, for example,
Figure5.

The top-half of the plot shows the set-up when the material interface is positioned just to the left of
the midpoint of the cellABCD. The Riemann solver coupling, discussed in the previous section, would
require thatWn

∗L be painted into the cellABCD. Now at the end of the time step, the interface will have
moved past the midpoint. Consequently, for the next time step, cellABCD will be considered to be a
real material and it is the cellBEFC that will receive a ghost-state. This introduces an error, as the cell
ABCD has not been updated for the left-hand material. From the Riemann analysis the cell should have
the stateWn+1

L , but it is left with the ghost state,Wn
∗L. Depending on the gradients in the problem, this

error can be large, but it is a sporadic error and so is likely to be less important than a persistent error. It
should also be noted that the error can be removed with the addition of a fix-up pass. One that explicitly
populates a cell, containing a newly emerged material, with the appropriate neighbouring state.

The lack of sub-cell resolution also means that as a material interface propagates through the mesh,
it is artificially kept behind the true position for the first-half of its transit across a cell, only to jump
ahead of the true position for the second-half of the transit. Now for linear problems one can imagine
how the resultant errors would be self-cancelling, thus resulting in a simulation which is correct, in some
average sense. But for a non-linear problem, it is likely that the errors would not cancel and so leave
some imprint on the numerical solution. While this situation has not yet been analysed, one can ask what
happens to the Riemann solution asλ2 is perturbed.

For instance, ifλ2 is artificially slowed,Wn+1
R is weighted towardsWn

∗R, and whenλ2 is artifi-
cially accelerated,Wn+1

R is weighted towardsWn
R. Thus for an expansion wave crossing the material

interface, the density for the first-half of the transit would be expected to be on the low side, and for the
second-half of the transit it would be expected to be on the high side. For a shock wave crossing the ma-
terial interface, the situation is reversed. It is too early to tell whether or not such reasoning has any merit.
But the possibility that theGhostFluidmethod can introduce artificial expansions and compressions, by
its lack of sub-cell resolution, should not be dismissed out of hand.
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Figure 5: A small change in the material interface position can flip the material in a cell. Here, cellABCD
changes material as the interface crosses the cell’s mid-point.

6



2.3 Choice ofGhostFluidstates

In the context of the present analysis the ghost states are not open to choice as the Riemann solution is
the exact solution to the governing PDE’s, and the “star states” are what couple the two materials. But
since otherGhostFluidprescriptions are in use, one can analyze the error associated with a particular
recipe by examining the departure of the states it uses from those used in the Riemann-based coupling.

Consider, for example, Figure6. It shows oneGhostFluidprescription in common usage. This
prescription mimics the Riemann solution only in the case of an isolated contact wave, and so when
gradients are introduced at the material interface, owing to either the passage of a shock wave or an
expansion fan, the ghost states will be in error.

Although the Riemann solution cannot be written in closed form, at least not in the general case, a
linearized solution can be formulated:

U∗ =
PL − PR + ZLUL + ZRUR

ZL + ZR
(10)

P∗ =
(UL − UR)ZLZR + ZLPR + ZRPL

ZL + ZR

ρ∗L = ρL +
ρ̄L(UL − U∗)

c̄L

ρ∗R = ρR +
ρ̄R(U∗ − UR)

c̄R

where,

ZL = ρ̄Lc̄L

ZR = ρ̄Rc̄R

The average quantities̄ρL, ρ̄R, c̄L, andc̄R need to be chosen so as to endow certain properties on the
linearized solution. For instance, in the single-material case, whereρ̄L = ρ̄R = ρ̄ and c̄L = c̄L = c̄,
so-called “Roe averages” ensure that the linearized solution mimics the exact Riemann solution for an
isolated shock[3, 4, 5]. In the two-material case, the common choice is to use:

ρ̄L = ρL (11)

ρ̄R = ρR

c̄L = cL

c̄R = cR

which has no special merit, except that it is straightforward to implement.
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Figure 6: OneGhostFluidprescription in common usage. This prescription can be termedcontact-coupling
as it mimics the Riemann solution in the case of an isolated contact surface.
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Equation10 can be used to gauge the accuracy of the contact-coupling prescription shown in Fig-
ure 6. For instance, the contact-coupling clearly under-estimatesP∗ when (PL = PR, UR = −UL).
However, the likelihood of flow colliding at a material interface is small. A much more common occur-
rence would be either a shock wave or an expansion fan moving through the interface. In the case of a
shock moving to the right:

ρL = ρ∗L = ρ∗R > ρR

PL = P∗ > PR

UL = U∗ > UR

RL = ∗L = ∗R

x

t
λ3

A B

CD

B′

C ′

while for an expansion:

PL = P∗ < PR

ρL = ρ∗L = ρ∗R < ρR

UL = U∗ < UR

RL = ∗L = ∗R

x

t
λ3

A B

CD

B′

C ′

In both these cases the contact-coupling prescribes:

ρ∗L = ρL

U∗L = UR

P∗L = PR

ρ∗R = ρR

U∗R = UL

P∗R = PL

and so it fails to mimic the essential flow attributes. Note that there is also a lack of consistency, for:

P∗L 6= P∗R

U∗L 6= U∗R

In the next section we present numerical results to demonstrate that the contact-coupling approach is
indeed found wanting in these circumstances.
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3 Consistency Check

A consistency check of theGhostFluidmethod can be performed by comparing a single-material sim-
ulation against a two-material simulation where the two materials are the same. This is not how the
GhostFluidmethod would be used in practice, but in the limit of the left- and right- materials being the
same, theGhostFluidmethod should not undermine the base flow-solver used for the simulation.

Two cases are presented below. The first case examines what affect theGhostFluidcoupling has
when an expansion fan crosses a material interface. The second looks at a shock wave crossing the
interface. Results are presented for both types ofGhostFluidcoupling discussed here: the Riemann-
coupling from Section2.1and the contact-coupling from Figure6.

3.1 Smooth flows

First we consider an isolated interface in a smooth flow, with states()L and()R across the interface.
As the flow is smooth, we can use the single-material, Euler equations cast in terms of the primitive
variables: density,ρ, velocity, u, pressure,P , and the ratio of specific heats,γ. Thus the governing
equations are:

∂U
∂t

+ A
∂U
∂x

= 0 (12)

where:

U =

 ρ
u
P

 ; A =

 u ρ 0
0 u 1/ρ
0 γP u

 (13)

Applying a Roe-type[3, 4, 5] linearization to Equation12, we get wave-speeds{λ̃1, λ̃2, λ̃3}:

λ̃1 = ũ− ã; λ̃2 = ũ; λ̃3 = ũ + ã (14)

wave-strengths{α̃1, α̃2, α̃3}:

α̃1 =
∆P − ρ̃ã∆u

2ρ̃ã2
; α̃2 =

ã2∆ρ−∆P

ρ̃ã2
; α̃3 =

∆P + ρ̃ã∆u

2ρ̃ã2
; (15)

and right eigenvectors{ẽ1, ẽ2, ẽ3}:

ẽ1 =

 ρ̃
−ã
ρ̃ã2

 ; ẽ2 =

 ρ̃
0
0

 ; ẽ3 =

 ρ̃
ã

ρ̃ã2

 ; (16)

Herea is the sound speed,γP
ρ , ∆() denotes the jump()R− ()L across the interface, and̃() denotes some

average of the()L and()R states. Note, by construction:

∆U =
k=3∑
k=1

α̃kẽk (17)

We can interpret Equations14 through16 in terms of the Riemann solution shown in Figure7.
The eigenvectors give the proportional jumps in the primitive variables,{ρ, u, P}, across each wave.
The wave strengths then give the scaling in the jumps. Note that the linearization collapses each wave
down to a single characteristic which is not a good approximation for a strong expansion fan, where
it is possible for the lead and trailing characteristics to be moving in opposite directions i.e. the fan
contains a sonic point. However, for the purposes of the present analysis, we can ignore this particular
complication. Here, we are also assuming that the flow is smooth and soλ̃1 andλ̃3 are not shock waves.

The idea is that we can now use the linearized evolution to evaluate the threeGhostFluidprescriptions
shown in Figure8. Specifically, we can ask whether or not the coupling introduced by a particular choice
of ghost-states results in an evolution that mimics the single-material evolution. If it does not then it can
be argued that the coupling is inconsistent with the governing PDE’s. In the first instance, we need only
consider the case of single right-going acoustic wave, and the data across the interface is chosen such
thatα̃1 = α̃2 = 0. This case is shown in Figure9.
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Figure 7: A diaphragm separating two semi-infinite states bursts. The Riemann solution, in the general case,
consists of three waves, with speeds{λ1, λ2, λ3}, that separate four states{UL,U∗L,U∗R,UR}.
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Figure 8: Three prescriptions used by theGhostFluidmethod.
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3.1.1 A right-going acoustic wave

If the states either side of the interface are consistent with a single right-going acoustic wave, as shown
in Figure9, then from Equation15:

∆P = ρ̃ã∆u; ∆P = ã2∆ρ; (18)

and the evolution in the celli + 1 is:

Un+1
i+1 = Un

i+1 − ν̃3α̃3ẽ3 (19)

whereν̃3 is the Courant number:

ν̃3 =
λ̃3∆t

∆x
(20)

This evolution can be rewritten as:

Un+1
i+1 = Un

i+1 − ν̃3

 ∆ρ
∆u
∆P

 (21)

to indicate that the primitive variables are simply advected with the appropriate wave speed.
The evolution of theith cell is similar, but need not be considered further, as it is not affected by

the choice of ghost-states. For using a signal-framework[5], only waves that enter a cell affect the cell’s
evolution, and since here we are assuming a single right-going acoustic wave, the coupling cannot affect
the left-hand cell1.

By inspection, the riemann-coupling is consistent with the single material evolution. For the right-
hand material receives the ghost-state,U∗R, which is identical to the left-hand material,UL, and so
the pseudo-material interface is effectively seamless. This is also the case with the isobaric-coupling.
By construction,P andu are simply lifted from the left-hand material, and because here the wave is
assumed to be isentropic, the isentropic extrapolation recovers the left-hand density. For this reason, the
isobaric-coupling introduced in [1] would be better termed isentropic-coupling. Indeed, by the argument
given in[1], the contact-coupling in Figure8 could also be termed isobaric. But as we show below, it
does not result in a seamless interface treatment, and so it is not the constant-pressure element that leads
to a well founded coupling.

UL = U∗L = U∗R

x

t
λ3

A B

CD

B′

C ′

c

i i + 1

Figure 9: The Riemann solution in the case of a single, right-moving acoustic wave.

1This statement is only true for a frozen interface. When the interface is allowed to move the solution in the left-hand cell can
be contaminated.

11



The contact-coupling artificially imposes the condition∆ρ = 0. Thus the wave strength̃α2 is
activated:

α̃2 =
−∆P

ρ̃ã2
; (22)

and the average quantities̃ρ, ã are altered. To leading order, however, the termsρ̃ã∆u andρ̃ã2 remain
the same and so the dominant affect is the spurious activation of the contact wave, as shown in Figure10.

The evolution in the celli + 1 is now:

Un+1
i+1 = Un

i+1 − ν̃3α̃3ẽ3 − ν̃2α̃2ẽ2 (23)

whereν̃2 is the Courant number:

ν̃2 =
λ̃2∆t

∆x
(24)

This new evolution can be rewritten as:

Un+1
i+1 = Un

i+1 − ν̃3

 ∆ρ
∆u
∆P

 + ν̃2

 ∆ρ
0
0

 (25)

It is tempting to argue that Equation25 is but a small departure from Equation21, for λ̃3 is usually
much larger thañλ2. But the numerical evidence is that with repeated applications of the evolution, say
as an expansion fan moves through the interface, the error in density accumulates. To understand why
this is the case, consider the functional form of Equation25. There is no error inu or P , only in ρ. Thus
after one iteration the velocity and pressure jump across the interface will still be consistent with the
acoustic wave fed into the problem. Therefore a second iteration will compound the situation, as will a
third, and a fourth, and so on. Now since the error in density affects the quantitiesρ̃ã andρ̃ã2 there will
come a point where errors creep into the velocity and pressure fields, but to leading order,α̃3 remains the
same as in the single-material case, thereby allowing the density error to grow in an unbounded fashion.

UL = U∗L

x

t
λ3λ2

A B

CD
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C ′

c

i i + 1

Figure 10: For a right-moving acoustic wave, the contact-coupling artificially activates the contact wave.

12



3.1.2 Numerical results for a perfect gas

We now present numerical results, for a perfect gas, to demonstrate that the above analysis is essentially
correct. Consider the computational setup shown in Figure11. The idea of this test is to introduce
a material interface at pointxi, somwhere in the right-side of the domain, and then use the solution
from the left-side as a control to observe the affect of theGhostFluidcoupling. The initial velocity can
also be tuned to alter the strength of the resultant expansion fans. As can be seen from Figures12-
16, the contact-coupling gives markedly poorer results for the density field than either the isobaric- or
riemann- couplings. The velocity and pressure profiles, on the other hand, are comparable in the all three
cases. Figures18and19show the evolution of the density step as the expansion-fan crosses the material
interface.

The plots of the wave strengths, see Figures13, 15, and17, are especially illuminating. Specifically,
as is seen with the isobaric- and riemann- couplings,α̃2 should nominally be zero. But with the contact-
coupling,α̃2 is comparable in strength tõα3, thus bearing out the error analysis. In short, the contact-
coupling is inconsistent with the underlying PDE’s and should not be used. A careful examination of the
wave strengths suggests that the isobaric-coupling performs marginally better than the riemann-coupling.
While this was unexpected, it should be appreciated that the accuracy of the linearized riemann-solver is
ultimately set by its choice of wave speeds, and as noted earlier the present solver is actually quite poor
on that score. The important point, however, is that the riemann-coupling preserves the characteristic
jumps across waves, and so is automatically consistent with the governing PDE’s.

The present test can be rerun using a frozen interface, see Figure20, and this bears out the obser-
vation, given earlier, that the left-hand cell is not affected by the contact-coupling i.e. the error is in-
troduced in the right-hand cell for a right-moving characteristic2. With a moving interface, as discussed
in §2.2, there is an additional error introduced when a cell flips material. From the numerical evidence,
this secondary error seems sufficient to centre the density error about the interface, c.f. Figures12 and
Figures20.

The computational results shown here are generated by scripts bundled withamr_sol::multimat, see:

examples/tests/pg/expansion.1
examples/tests/pg/expansion.2

2The error would be introduced into the left-hand cell for a left-moving characteristic.

L R

∗L = ∗R

x

t
λ1 λ3

xi

ρL = 1
UL = −1
PL = 1

ρR = 1
UR = 1
PR = 1

Figure 11: Schematic showing the wave pattern for the expansion test. Note that the expansion fans are
collapsed down to a single characteristic, as would be the case with a linearized analysis. The material
interface is positioned atxi = 0.15 .
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isobaric-coupling contact-coupling riemann-coupling

Figure 12: Computational results for an expansion-fan crossing a material interface; click to zoom in on
the individual graphs. The solid lines are the control solution from the left-hand side of the computational
domain. Observe how thecontact-couplingintroduces an unphysical step in the density profile, but the
velocity and pressure profiles are unaffected. Theisobaricandriemanncouplings give comparable results.
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isobaric-coupling contact-coupling riemann-coupling

Figure 13: Plots of̃α1, α̃2, andα̃3, for the expansion test. In practice all the couplings activateα̃2, whereas
for a pure expansion it would be expected to be of zero strength. However, in accordance with the analysis,
α̃2 for the contact-coupling is much larger than with the other two couplings. The difference between the
isobaric-coupling and riemann-coupling is small.
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isobaric-coupling contact-coupling riemann-coupling

Figure 14: The same computation as shown in Figure12, but twice the mesh resolution. The unphysical
step in density is reduced in size, however, it is still pronounced. Note that the nature of the error is such that
it does not have a simple order of convergence. The error introduced per iteration certainly decreases as the
mesh size decreases. But to counteract the reduction, more iterations are needed to reach a given time. Thus
it is the accumulation of the error that matters, and inevitably the accumulation is controlled by non-linear
effects that are beyond the scope of the present analysis.
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Figure 15: Plots of̃α1, α̃2, andα̃3, corresponding to Figure14. The spurious̃α2 is two orders of magnitude
larger with the contact-coupling than it is with either the isobaric- or riemann- couplings.
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Figure 16: The same computation as shown in Figure12, but four times the mesh resolution. The unphysical
density-step is still prominent, suggesting that thecontact-couplingis deficient.
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Figure 17: Plots of̃α1, α̃2, andα̃3, corresponding to Figure16. The spurious̃α2 is again two orders of
magnitude larger with the contact-coupling than it is with either the isobaric- or riemann- couplings.
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Figure 18: The unphysical density-step, introduced by thecontact-coupling, grows as the expansion-fan
crosses the material interface. This time sequence is taken from the simulation shown in Figure12.

20



Figure 19: The evolution of the error in density remains the same as the grid is refined. This time sequence
is taken from the simulation shown in Figure16.
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Figure 20: Computational results for an expansion-fan crossing a frozen material interface; click to zoom in
on the individual graphs. The solid lines are the control solution from the left-hand side of the computational
domain. Observe how thecontact-couplingintroduces an unphysical step in the density profile, but the
velocity and pressure profiles are unaffected. Theisobaricandriemanncouplings give comparable results.
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3.1.3 Numerical results PBX-9502

The unphysical density-step introduced by thecontact-couplingwould be expected to be benign for a
perfect-gas simulation; an unwanted glitch, but not a show-stopper. On the other hand, for the sorts of
equations of state (EOS) used in high-explosive simulations, a perturbation to the density field could
conceivably take the numerical simulation outside the EOS’s thermodynamic bounds. Therefore we
rerun the test given above, replacing the perfect gas withPBX-9502.

The results are shown in Figures21 through28. Note that these simulations were run with the reac-
tion turnedoff. The basic behaviour is the same as for the perfect gas case, except now the perturbation
introduced by thecontact-couplingis sufficient to trip the EOS, at least on the coarsest grid run. Thus the
simulation cannot run to completion and it fails at at the time step immediately following the last frame
shown in Figure21. The failure occurs at the density minimum, withc2 < 0. For the higher resolution
grids, see Figures23 and25, thecontact couplingartifact is sufficiently reduced that the simulation can
run to completion, but it is clear that the contact-coupling is much inferior to both the isobaric- and
riemann- couplings.

Before moving on, it should be noted that the initial conditions chosen here also cause trouble for
the base flow-solver with a single material. Specifically, if the velocity is increased slightly beyond
that used here, the numerical “wall heating” affect at the origin of the domain is also sufficient to trip
the EOS. Therefore it could be argued that the EOS is ultimately the limiting factor in performing HE
simulations and not thecontact-couplingin the GhostFluidmethod. However, thecontact-couplingis
clearly not helping matters and since the density perturbation is mirrored in the temperature field the
approach would likely prove troublesome when using temperature-dependent reaction rates.

The “wall heating” is also responsible for the small glitch seen in the density profiles computed with
the riemann-couplingapproach. But, unlike the perturbation introduced by thecontact-couplingit is
sensitive to the initial position of the interface i.e. the further the interface is placed from the origin,
where the “wall heating” originates, the smaller the glitch.

The computational results shown here are generated by a script bundled withamr_sol::multimat, see:

examples/tests/pbx/expansion.1
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Figure 21: Computational results for an expansion-fan crossing a material interface; click to zoom in on
the individual graphs. The solid lines are the control solution from the left-hand side of the computational
domain. Observe how thecontact-couplingintroduces an unphysical step in the density profile, but the
velocity and pressure profiles are unaffected. Theisobaricandriemanncouplings give comparable results.
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Figure 22: Plots of̃α1, α̃2, andα̃3, for the expansion test. In practice all the couplings activateα̃2, whereas
for a pure expansion it would be expected to be of zero strength. However, in accordance with the analysis,
α̃2 for the contact-coupling is much larger than with the other two couplings. The difference between the
isobaric-coupling and riemann-coupling is small.
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Figure 23: The same computation as shown in Figure12, but twice the mesh resolution. The unphysical
step in density is reduced in size, however, it is still pronounced. Note that the nature of the error is such that
it does not have a simple order of convergence. The error introduced per iteration certainly decreases as the
mesh size decreases. But to counteract the reduction, more iterations are needed to reach a given time. Thus
it is the accumulation of the error that matters, and inevitably the accumulation is controlled by non-linear
effects that are beyond the scope of the present analysis.
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Figure 24: Plots of̃α1, α̃2, andα̃3, corresponding to Figure14. The spurious̃α2 is two orders of magnitude
larger with the contact-coupling than it is with either the isobaric- or riemann- couplings.
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Figure 25: The same computation as shown in Figure12, but four times the mesh resolution. The unphysical
density-step is still prominent, suggesting that thecontact-couplingis deficient.
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Figure 26: Plots of̃α1, α̃2, andα̃3, corresponding to Figure16. The spurious̃α2 is again two orders of
magnitude larger with the contact-coupling than it is with either the isobaric- or riemann- couplings.
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Figure 27: The unphysical density-step, introduced by thecontact-coupling, grows as the expansion-fan
crosses the material interface. This time sequence is taken from the simulation shown in Figure21.
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Figure 28: The evolution of the error in density remains the same as the grid is refined. This time sequence
is taken from the simulation shown in Figure25.
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3.2 Non-smooth flows

We now consider the consistency of the ghost-fluid coupling when a shock wave crosses the psuedo-
material interface introduced above. The situation is more complicated than the expansion-wave case,
because a shock-capturing scheme does not represent a right-moving shock-wave as an isolated acous-
tic i.e. while α̃3 is the primary wave-strength,̃α1 andα̃2 are non-vanishing. The fact that the expected
passive-characteristics are active manifests itself in the familiar “start-up” errors that are generated when-
ever a prescribed shock-jump relaxes down to the smeared profile that a particular numerical scheme can
support. Such start-up errors can also be generated when a numerical shock-profile crosses a disconti-
nuity in mesh spacing[2]. In fact, any numerical process that perturbs a captured-shock’s equilibrium
profile will result in errors that manifest themselves on the supposed passive characteristics. Therefore it
would be expected that the ghost-fluid coupling would give rise to start-up errors whenever a captured-
shock crosses a material interface.

Here, for brevity, we only present results for a perfect-gas, because the behaviour observed with other
EOS’s is identical. Instead, it is more important to consider weak shocks separately from strong shocks,
as there is a marked difference between the two cases.

3.2.1 Weak shocks

The computational setup is shown in Figure29. The idea of this test is to introduce a material interface
at a pointxi, somwhere ahead of a shock-wave which is prescribed atxs. Thus by the time the shock
reaches the interface it has settled down to its equilibrium, smeared profile. Moreover, the start-up errors
have fallen sufficiently far behind the shock that they play no role in the test.

As can be seen from Figures30-35, the contact-coupling gives markedly poorer results for the density
field than either the isobaric- or riemann- couplings. Specifically, a numerical overshoot is introduced
into the density profile. The velocity and pressure profiles, on the other hand, are comparable in all three
cases. Figures36and37show the evolution of the numerical overshoot as the shock crosses the material
interface. The results given here are for a first-order, forward-euler scheme with Lax-Friedrichs flux. But
the results are representative of those obtained with higher-order methods and other flux functions. Note
that as the shock is weak the analysis given for the expansion case applies.

RL = ∗L = ∗R

x

t
λ3

xi

Ms = 1.2
γ = 1.4

Figure 29: Schematic showing the wave pattern for the weak-shock test. The material interface is positioned
atxi = 0 with the shock prescribed atxs = −1.4. The script for this test is bundled withamr_sol::multimat,
seeexamples/test/pg/shock.1.
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Figure 30: Computational results for an weak shock-wave crossing a material interface; click to zoom in on
the individual graphs. The solid lines give the exact shock profile. Observe how thecontact-couplingintro-
duces an unphysical overshoot in the density profile, but the velocity and pressure profiles are unaffected.
The isobaricandriemanncouplings give comparable results.
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Figure 31: Plots of̃α1, α̃2, andα̃3, for the weak-shock test. In practice all the couplings activateα̃1 andα̃2,
whereas for a pure shock they would be expected to be of zero strength. However, in accordance with the
analysis,α̃2 for the contact-coupling is much larger than with the other two couplings. The peak value of
α̃2 for the riemann-coupling is an order of magnitude smaller than that for the contact-coupling.
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Figure 32: The same computation as shown in Figure30, but twice the mesh resolution. The overshoot
in density does not diminish as there is no length scale in the problem i.e. the smeared shock profile is
self-similar with mesh spacing.
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Figure 33: Plots of̃α1, α̃2, and α̃3, corresponding to Figure32. The peak value of̃α2 for the contact-
coupling is two orders of magnitude larger than that for the riemann-coupling.
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Figure 34: The same computation as shown in Figure30, but four times the mesh resolution. The density
overshoot with thecontact-couplingsuggests that the approach is inconsistent with the underlying PDE’s.
Note that as the shock is weak the isobaric-coupling, with its isentropic assumption, is not in gross error.
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Figure 35: Plots of̃α1, α̃2, andα̃3, corresponding to Figure34. The peak value of̃α2 is again two orders of
magnitude larger with the contact-coupling than it is with the riemann-coupling.
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Figure 36: The density overshoot, introduced by thecontact-coupling, can be traced back to an over-
steepening of the shock’s density profile as it crosses the material interface. This time sequence is taken
from the simulation shown in Figure30.
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Figure 37: The evolution of the error in density remains the same as the grid is refined. This time sequence
is taken from the simulation shown in Figure34.
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Figure 38: Computational results for a weak-shock crossing a frozen material interface; click to zoom in on
the individual graphs. The solid lines are the control solution from the left-hand side of the computational
domain. Observe how thecontact-couplingintroduces an overshoot in the density profile, but the velocity
and pressure profiles are unaffected. The results with theriemann-couplingare marginally better than those
with the isobaric-coupling.
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3.2.2 Strong shocks

The computational setup for the strong shock-wave case is shown in Figure39. The situation is the same
as before, except that the shock Mach number has been increased from 1.2 to 10. As can be seen from
Figures40-45, all the ghostfluid couplings now exhibit an overshoot in the density field. The overshoot
with the contact-coupling, however, is clearly larger than those with the other couplings. Figures46and
47show the evolution of the numerical overshoot as the shock crosses the material interface. Again, the
results given here are for a first-order, forward-euler scheme with Lax-Friedrichs flux. But the results are
representative of those obtained with higher-order methods and other flux functions.

Figure48 shows the results when the interface is frozen. The results for the isobaric- and riemann-
couplings are similar, but something is clearly amiss. The analysis for the expansion case no longer
applies, given the strength of the shock. But the source of the error seen in Figure48 is not hard to
find. Consider Figure3. For a single material calculation, the flux acrossAD is the same for both
cells ABCD andADC ′B′. Specifically, it isF(W∗L). But in the two-material simulation shown in
Figure48, with riemann-coupling: the left-hand cell usesF(W∗L) and the right-hand cell usesF(W∗R).
Now for a single right-moving shock,W∗L andW∗R should be the same and so the discrepancy should
not matter. But for a numerically-smeared shock, the star states are not the same. And for the strength
of shock used here, there is a sizeable difference3. Thus the right-hand cell uses a flux which is in gross
error, while that for the left-hand cell is correct. This explains why the profile seen in Figure48is correct
on the left-hand side of the interface, but incorrect on the right-hand side. When the interface is allowed
to move, the error is much reduced. But it still retains its lop-sided nature as can be seen by examining
the riemann-coupling, density-profile in Figure44.

It is relatively straightforward to devise a ghostfluid prescription that passes the present strong-shock
test with flying colours. For an examination of the functional form for Equation11 suggests that all
one need do is to apply an isobaric prescription with the constraintρc = constant, rather than the
normal isentropic constraint. Then the two-material simulation reduces identically to the one-material
simulation, which has been confirmed by numerical testing. However such an impedance-coupling fails
when the left and right materials are different, thus undermining its usefulness.

RL = ∗L = ∗R

x

t
λ3

xi

Ms = 10
γ = 1.4

Figure 39: Schematic showing the wave pattern for the strong-shock test. The material interface is positioned
atxi = 0 with the shock prescribed atxs = −1.4. The script for this test is bundled withamr_sol::multimat,
seeexamples/test/pg/shock.1.

3In the weak-shock case the difference between the star states is sufficiently small that the discrepancy in the choice of fluxes
does not matter.
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Figure 40: Computational results for a strong shock-wave crossing a material interface; click to zoom in on
the individual graphs. The solid lines give the exact shock profile. For a strong shock all three couplings
give an overshoot in density, although the overshoot with thecontact-couplingis significantly larger than
that for either theisobaric-or riemann-couplings. Thecontact-couplingalso now has an overshoot in the
pressure field.
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Figure 41: Plots of̃α1, α̃2, andα̃3, for the strong-shock test. Observe howα̃2 is now non-small compared
to α̃1 for all three of the couplings. This is true, however, for the smeared-shock even before it gets to the
material interface and it is what distinguishes the strong-shock case from the weak-shock one.
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Figure 42: The same computation as shown in Figure40, but twice the mesh resolution. The overshoot
in density does not diminish as there is no length scale in the problem i.e. the smeared shock profile is
self-similar with mesh spacing. The density overshoot for the isobaric case looks like it has diminished, but
this is merely a consequence of the specific frame picked out from the simulation.
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Figure 43: Plots of̃α1, α̃2, andα̃3, corresponding to Figure42.
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Figure 44: The same computation as shown in Figure40, but four times the mesh resolution. The density
overshoot for the riemann-coupling can be reduced slightly by replacing the present linearized solver with
an exact riemann solver. But the source of the overshoot cannot be eliminated, as it ultimately arises from
the choice of control-volume used by the ghost-fluid method.
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Figure 45: Plots of̃α1, α̃2, andα̃3, corresponding to Figure44.
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Figure 46: The density overshoot, introduced by thecontact-coupling, can be traced back to an over-
steepening of the shock’s density profile as it crosses the material interface. This time sequence is taken
from the simulation shown in Figure40.
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Figure 47: The evolution of the error in density remains the same as the grid is refined. This time sequence
is taken from the simulation shown in Figure44.
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Figure 48: Computational results for a strong-shock crossing a frozen material interface; click to zoom in
on the individual graphs. The results for the isobaric- and riemann- coupling now give nonsense, but this
can be explained by the fact the smeared shock now carries with it what amount to a sequence of mini
contact-surfaces. And when these contacts cross the frozen material-interface, a sizeable error is introduced
because the flux for the right hand material is computed usingW∗R rather thanW∗L as would be the case
for a true single-material simulation.
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4 Closing comments

This note identifies a number of intrinsic weaknesses of the ghostfluid method. The nature of the weak-
nesses helps explain the hit-and-miss experience, where sometimes the ghostfluid method works quite
nicely and other times it fails miserably. The popularity of the method is undoubtedly due to the ease
with which it can be implemented and the fact that its inherent weaknesses are not exposed in a number
of applications of interest.

The numerical evidence presented here is far from exhaustive, but amrprogamr_sol::multimat can be
used to pose follow-up questions. For example, it should be realised that the perturbations generated by
the ghostfluid method, say as a shock crosses a material interface, can be sufficient to trip an EOS that
has a limited domain of dependence. And while tuning the flavour of ghostfluid coupling can sometimes
help matters, the perturbations are symptomatic of deeper problems. The real failing of the ghostfluid
algorithm lies with its choice of control-volumes, which can, depending on the data involved, be a poor
approximation to the lagrangian control-volumes needed at material boundaries.

The recommendation here is that an HE group discussion is needed to determine whether or not the
ghostfluid method constitutes a viable, long-term simulation tool. For example, the evidence given here
suggests that the method will not be able to cope with shock-initiation problems that employ temperature-
dependent reaction rates. And it is to be hoped that a group discussion would bring out any other issues
that remain to be addressed.
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